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Abstract

Estimation of freeway travel time with reasonable accuracy is essential for successful implementation of an advanced traveler

information system (ATIS) for use in an intelligent transportation system (ITS). An ATIS consists of a route guiding system

that recommends the most suitable route based on the traveler’s requirements using the information gathered from various

sources such as loop detectors and probe vehicles. This information can be disseminated through mass media or on on-board

satellite-basednavigational system. Basedon the estimatedtravel times for various routes, the traveler can make a route choice.

In this article, a neural network model is presented for forecasting the freeway link travel time using the counter propagation

neural (CPN) network. The performance of the model is compared with a recently reported freeway link travel forecasting model

using the backpropagation (BP) neural network algorithm. It is shown that the new model based on the CPN network, and the

learning coefﬁcients proposed by Adeli and Park, is nearly two orders of magnitude faster than the BP network. As such,

the proposed freeway link travel-forecasting model is particularly suitable for real-time advanced travel information and

management systems.

r 2003 Publishedby Elsevier Ltd.
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1. Introduction

Recent economic andenvironmental concerns have

placedthe focus on efﬁcient andintelligent utilization of

the existing transportation infrastructure, rather than

adding to it. Traditional models of trafﬁc congestion

andmanagement lack the adaptability andsophistication

needed to effectively and reliably deal with increasing

trafﬁc volume on the freeway. Intelligent transportation

systems are intended to provide a high level of

automation in the freeway system through the use of

advanced and adaptive technologies and implementation

of advanced trafﬁc management systems (ATMS) and

advanced traveler information systems (ATIS).

Estimation of freeway travel time with reasonable

accuracy is essential for successful implementation of an

ATIS for use in an intelligent transportation system

(ITS). An ATIS consists of a route guiding system

(RGS) that recommends the most suitable route based
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on the traveler’s requirements, using the information

gatheredfrom various sources such as loop detectors

andprobe vehicles. This information can be dissemi-

nated through mass media, such as radio and the

Internet, or on boardsatellite-basednavigational

system. Basedon the estimatedtravel times for various

routes, the traveler can make route choices.

The freeway network can be considered as consisting

of a number of links. A link can be a portion of the

freeway between upstream anddownstream loop

detectors. Logically, the link travel times used in the

RGS shouldbe estimatedfrom the time the driver

actually arrives at the initial point of the link. Hence,

freeway link travel times forecasting must be done over

multiple time steps or periods, particularly when the

travel time on the link under consideration is relatively

long. For such links, it is unlikely that the travel time

will remain constant over a periodof time. The success

of an RGS, however, depends on its ability to predict

the anticipatory link travel time in addition to the

historical andreal-time link travel time.
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Traditionally, short-term freeway link travel time

has been forecast by time series models (Nihan and
Holmesland, 1980; Dailey, 1993; Van Arem et al., 1997),
Kalman ﬁltering model (Okutani andStephanedes,
1984) andhistorical andreal-time proﬁles (Boyce et al.,
1993). These models are effective for predicting the

travel time one time step aheadbut deteriorate when the

forecasting has to be done over multiple time steps (Park
andRilett, 1999).

Neural network computing appears to be a promising

approach to overcome this shortcoming. A neural

network provides a mapping between a set of inputs

andcorresponding outputs (Adeli and Hung, 1995). The

network is trainedto learn this mapping using a number

of training examples. The training is achievedby

determining the network’s weights. A review of civil

engineering applications of neural networks up to 2000

was presentedby
Adeli (2001). Recent research on

transportation engineering applications of neural net-

works is presentedby Adeli and Samant (2000), Adeli
andKarim (2001), Samant andAdeli (2001), Karim and
Adeli (2002, 2003a ,b), Adeli and Jiang (2003), Jiang and
Adeli (2003), and
Ghosh-Dastidar and Adeli (2003)
among other.

Recently,
Park andRilett (1999)
presenteda multi-

player feedforward neural network for freeway link

travel time forecasting using the backpropagation

learning rule (Rumelhart et al., 1986) for training the

network. They forecast up to ﬁve periods (time steps)

into the future with a time step of 5 min. They have

investigatedvarious input-output combinations and

concluded that ‘‘when predicting three through ﬁve time

periods into the future, the ANN models that employed

spatial data in the form of link travel times on links

immediately upstream and downstream from the target

link gave the lowest error’’ basedon a 5-min time step.

They comparedthis approach with a Kalman Filtering

model, the ALI SCOUT method(Hoffman andJanko,
1990), the historical travel time proﬁle, the real-time

travel time proﬁle, andan exponential smoothing model

(Chassakios andStephanedes, 1994) andreportedthat,

overall, the neural networks were 20% more accurate in

the forecasting of freeway link travel time as comparedto

other models that they employed for the same purpose.

Backpropagation (BP) is the most widely used neural

network model in civil engineering applications, pri-

marily due to its simplicity (Arditi et al., 1998; Cattan
andMohammadi, 1997;
Deo andChaudhari, 1998;
Owusu-Ababia, 1998;
Thirumalaiah andDeo, 1998).
However, backpropagation has shortcomings, including

a very slow rate of convergence andarbitrary and

problem-dependent selection of the learning and mo-

mentum ratios, as pointedout by Adeli and Hung (1994)
andothers.

In this article we present a neural network model for

forecasting the freeway link travel time using the



counter propagation neural (CPN) network anddemon-

strate its superiority over the backpropagation learning

model.

2. Counterpropagation network

CPN employs a combination of supervisedand

unsupervisedlearning (Hecht-Nielsen, 1998; Adeli and
Park, 1995, 1998). The topology of a CPN network

consists of three layers: input, competition, andinter-

polation (Fig. 1). The training of a CPN network is

carriedout in two stages. In the ﬁrst stage, the weights

of the links connecting the input layer to the competi-

tion layer are computedusing the Kohonen learning

rule. Let X denote the input vector and Wjdenote the

weight vector for the links connecting the nodes in

the input layer to the jth node in the competition layer.

The Euclidean distance between the input vector and the

weight vector corresponding to the
jth node in the

competition layer is given by

djј
WjX :
р1Ю

For any given training instance, a competition is

createdamong the nodes in the competition layer. The

node with the smallest Euclidean distance wins. In-

hibitory interlayer connections between the nodes in the

Fig. 1. Topology of counterpropagation neural network for freeway

link travel time forecasting.
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competition layer are usedto conduct this competition

andset the output of the winning node to 1 andall other

nodes to 0. If the
kth node is the winning node in the

competition layer, then the outputs of the nodes in the

competition layer are assignedas follows:



layer, Ykis the output corresponding to the kth node in

the output layer, and b is the learning coefﬁcient. We use

the same Eq. (4), proposedby Adeli and Park (1995), to

evaluate b:

To test the learning accuracy of the CPN network we

Oiј


(


0 for all nodes except the winning nodes рiakЮ;


deﬁne an error term in the following form:

1 X

1 for the winning node рi ј kЮ:



р2Ю


E ј


2


k


ЅOkYk2;

р6Ю

The weight Wijof the link connecting the input node

to the node in the competition layer is computed from

the Kohonen learning rule (Kohonen, 1988) as follows:


where
Ykand
Okare the actual andthe computed

outputs, respectively.

Wijрn ю 1Ю ј WijрnЮ ю a XiWijрnЮ
Oi

р3Ю


3. Freeway link travel time forecasting using CPN

where
n
is the iteration number,
Xiis the input

corresponding to the ith node in the input layer and a

is the learning csoefﬁcient.
Hecht-Nielsen (1988)
sug-

gesteda value in the range of 0 and0.8 for the learning

ratio. We use the following expression proposedby

Adeli and Park (1995):
1

a ј
:
р4Ю

рn ю 1Ю2
This expression provides several advantages. First, it

circumvents the arbitrary and problem-dependent selec-

tion of the learning parameter. Second, it provides a

variable value as a function of the iteration number.

Third, it ensures that the weight changes are reduced

after each iteration, thus stabilizing the weight compu-

tations andimproving the convergence performance.

This process is repeatedfor all the training instances. In

other words, the values of weights are updated after

addition of each successive training example.

It shouldbe notedthat in a CPN network only the

weights of the links fanning out of the winning nodes are

updated in every iteration (one winning node for each

training example). This is in contrast to the back-

propagation neural network, where all the weights are

updated in every iteration. In a CPN network, a winning

node for a particular training example is temporarily

deactivated for all other input patterns and is not

allowedto participate in the competition for other

training instances in the current iteration. This idea is

basedon the so-calledconscience mechanism
originally

proposedby
DeSieno (1988)
where each node can win

only once in a single iteration of a particular training

instance.

In the secondstage of training a CPN network, the

weights of the links connecting the competition layer to

the output or interpolation layer are foundusing the

Grossberg learning rule (Grossberg, 1982):


The topology of a CPN network for forecasting the

freeway link travel time is shown in Fig. 1. The number

of nodes in the input layer is equal to the number of

preceding time intervals, Np: The number of nodes in the

output layer is equal to the number of future time

intervals,
Nf:
We select the number of nodes in the

competition layer, Ncto be equal to the number of training

instances. We foundthat to be the minimum number of

nodes needed in the hidden (competition) layer in order to

obtain satisfactory results. Choosing a number greater

than the number of training instances for the number of

nodes in the competition layer increases the computational

costs without any improvement in accuracy. As such, we

have a logical way of selecting the number of nodes in the

competition layer. This is in contrast to the BP algorithm

where one cannot ﬁnda similar logical rule for selection of

the number of nodes in the hidden layer.

4. Backpropagation network

For the sake of comparison, we have also implemen-

tedthe BP training algorithm. The topology of the BP

network is shown in Fig. 2. The numbers of nodes in the

input andoutput layers are Npand Nf; respectively; the

same as those of the CPN network shown in
Fig. 1.

Using a larger number of hidden nodes can potentially

improve the accuracy andconvergence of the BP

algorithm at the cost of increasing the computational

processing time. Park andRillet (1999) use four nodes in

the hidden layer while considering seven input time steps

andﬁve output time steps andreport no signiﬁcant

improvement when a larger number of nodes is used. In

this work, we also used four nodes in the hidden layer

for a similar conﬁguration for the sake of comparison.

The BP training rule is a steepest descent algorithm in

the parlor of optimization (Adeli, 1994) in the following

Vjkрn ю 1Ю ј VjkрnЮ ю b YkVjkрnЮ
;


р5Ю


form:



qE

where Vjkis the weight of link connecting the jth node in

the competition layer to the
kth node in the output


Wjkрn ю 1Ю ј WjkрnЮ ю Z


qWjk

ю lDWjk;


р7Ю
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5. Training the network

The data for this project was obtained from the

simulation package TSIS (Trafﬁc Software Integrated

Systems, Version 4.21, developed by the Federal High-

way Administration (FHWA) (http://www.fhwa-tsis.-
com/). TSIS is a versatile package for microscopic trafﬁc

simulation. At the heart of the TSIS package is the

FHWA’s
microscopic
trafﬁc
Corridor
Simulation

(CORSIM). CORSIM provides FRESIM (Freeway

Simulation Model) for simulating freeway trafﬁc. The

TSIS environment has several attractive features,

including an intuitive, user-friendly graphical interface,

scrollable screen output, andon-line context-sensitive

help that encompasses the CORSIM User’s Guides. The

package also comes with a user-friendly object-oriented

graphics post-processor, TRAFVU (TRAF Visualiza-

tion Utility).

Fig. 3 shows the geometry of a four-lane freeway (in

each direction) simulated using the TSIS software. The

numbers in the ﬁgure refer to the freeway nodes

(locations of the loop detectors). TSIS software requires

that all the entry andexit nodes be numberedin the

range of 8000 and8999. A sample of simulatedtravel

Fig. 2. Topology of backpropagation neural network for freeway link

travel time forecasting.

where
WjkрnЮ
is the weight of a link connecting the jth

node in the hidden layer to the kth node in the output

layer at the endof the nth iteration, E is the error term, Z

is the learning ratio, l is the momentum ratio, and DWjk
is the change of weight during the last iteration. The

error term E is deﬁned the same as Eq. (6), however, the

computedoutput in the BP algorithm is expressedas

follows:


time data for link 1–2 in
Fig. 3, which is 5000 feet

(0.95 miles or 1.5 km) long, for a 120-min periodusing 5-

min time steps is shown in Fig. 4. To train the neural

network several such simulations were performed.

Ykј



X

g



X

j



Wjkg



X

i



WijXi

!!

;



р8Ю



Fig. 3. Geometry of a simulatedfour-lane freeway.

where Xiis the value of the ith input node and g is the

activation function deﬁned by the following sigmoid

function:

1

gрxЮ ј


:

1 ю ex

р9Ю

Researchers have reportedthat using a large value for

the learning ratio may result in convergence oscillation,

while a small value may result in unsatisfactory learning

(Adeli and Hung, 1995). The recommended value for the

momentum ratio is in the range of zero to 1.0 (Hertz
et al, 1991). After trying several different numbers,

values of 0.8 and0.5 were selectedfor the learning and

momentum ratios, respectively, in this work.



Fig. 4. Simulatedlink travel times for link 1–2 shown in Fig. 3 during

a 120-min simulation periodusing 5-min time steps.
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We will investigate the relation between the length of

the forecasting time step andthe average forecasting

error. Four different cases are considered with the same

number of time steps andtotal duration of 30 min for

both input andtravel forecasting times. In Case A, ten

3-min time steps were usedas input andthe link travel

times are forecast for ten 3-min time steps into the

future. In Case B, six 5-min time steps are usedas input

andthe link travel times are forecast for six 5-min time

steps into the future. In Case C, three 10-min time steps

are usedas input andthe link travel times are forecast

for three 10-min time steps. In Case D, two 15-min time

steps are usedas input andthe link travel times are

forecast for two 15-min time steps. The number of nodes

in the input, competition, andinterpolation layers for

Table 1

Number of nodes in the input, hidden (competition) and output

(interpolation) layers for the CPN networks



the neural networks usedfor these combinations are

presentedin Table 1.
6. Training results

The CPN andBP models for freeway travel forecast-

ing have been implementedin C++ on a Pentium

300 MHz computer. Using the TSIS simulation package,

two hundred and ten training examples were generated

for the freeway segment shown in Fig. 3 andusedto

train the CPN andBP networks.

The convergence results for training the BP network

for the four cases A–D are presentedin terms of

normalized error (error divided by the largest error

during the iterations) versus the number of iterations in

Fig. 5. Similar results for the CPN network are

presentedin
Fig. 6
(competition layer) and
Fig. 7
(interpolation or output layer). In all cases, the same

tolerance limit of 0.005 was used.
Table 2
shows the

Model


Duration of

time step

(min)


No. of input
No. of

nodes
hidden

nodes


No. of

output

nodes


training times for the two approaches on the Pentium

300 MHz machine. The superiority of the CPN network

over the BP network are clearly demonstrated in

A

B

C

D


3

5

10

15


10

6

3

2


210

210

210

210


10

6

3

2


Figs. 5–7
andin
Table 2. The BP algorithm requires

thousands of iterations versus only 5–17 iterations for

the CPN algorithm. In terms of processing time, the

CPN network takes 2.9–4.1 s versus 213–398 s for the BP

Fig. 5. Convergence curves for the BPN network.
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Table 3

Average error in forecasting time

Duration of time
BPN Percentage

step (min)
error

3
9.6

5
11.5

10
14.3

15
21.0



CPN percentage

error

8.9

10.9

16.1

20.6

Fig. 6. Convergence curves for the competition layer of CPN network.

Fig. 7. Convergence curves for the interpolation layer of CPN

network.

Table 2

Training time (s)



The veriﬁcation results indicate that the CPN and BP

models predict the freeway link travel times with similar

accuracy. Table 3 shows that the smaller the forecasting

time step, the smaller the error. In other words, the

higher the resolution of the data provided to the neural

network, the more accurate its prediction will be. It is

interesting to note that the magnitude of the error

increases with the magnitude of the forecasting time step

roughly linearly. The average error for Case A with the

smallest time step of 3 min is around9%.
Park and
Rillet (1999) have reportedprediction errors in the range

of 12.5–23.4% using other methods, while predicting

freeway link travel times 25 min into the future.

8. Conclusion

The BP training algorithm has been popular primarily

because of its simplicity. In this paper we presenteda

CPN model and network with learning coefﬁcients as

proposedby Adeli andPark for forecasting the freeway

link travel time andshowedthat it is nearly two orders

of magnitudes faster than the BP training algorithm for

Model

A

B

C

D


Backpropagation

398.3

312.7

276.4

212.8


Counterpropagation

4.1

3.8

3.4

2.9


the same level of accuracy.

The BP algorithm uses the steepest descent rule for

minimization of the mean square error. Hence, the

inherent entrapment pitfall of the steepest descent

algorithm is also inheritedby the BP algorithm. The

BP algorithm is very sensitive to the choice of initial

weights. It will converge to a local minimum in the

network to achieve the same level of accuracy. The CPN

network is nearly two orders of magnitude more

efﬁcient than the BP network.

7. Forecasting results

In order to test the travel time forecasting capability

of the CPN we generatedﬁfty new sets of freeway trafﬁc

link travel times for each one of the Cases A–D using the

TSIS simulation package. The link travel-time obtained

from the simulation package is then comparedwith the

computedtravel times using the CPN andBP networks.

The averages of the error percentages for Cases A–D are

summarizedin Table 3.

vicinity of the initial solution (Fig. 8). Different initial

weights will result in different local minima if more than

one local minimum are present. Consequently, the

convergence behavior of the BP algorithm is often

non-smooth andjagged, as notedin
Fig. 5. The

convergence of the CPN algorithm, on the other hand,

is very smooth, as notedin Figs. 6 and7.
In the BP algorithm, the addition of any new pattern

affects the weights of all the links; the same weight may

be pulled in different directions by different training

patterns. This results in excessive computational time

for training the network. In the CPN algorithm, the

effect of a particular training pattern is localizedto the

weight of its winning node only. Thus, computational

time required for training is drastically reduced.
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Fig. 8. Error minimization using BPN.

An appropriate topology for the BP algorithm,

including the number of hidden layers and the number

of nodes in the hidden layer, is selected by a trial-and-

error process. Conversely, a CPN network always has

three layers: input, competition, andinterpolation. The

number of nodes in the competition, or hidden layer, is

governedby the number of training patterns presented

to the network.

References

Adeli, H. (Ed.), 1994. Advances in Design Optimization, Chapman &

Hall, London.

Adeli, H., 2001. Neural networks in civil engineering: 1989–2000.

Computer-Aided Civil and Infrastructure Engineering 16 (2),

126–142.

Adeli, H., Hung, S.L., 1994. An adaptive conjugate gradient learning

algorithm for efﬁcient training of neural networks. Applied

Mathematics andComputation 62 (1), 81–100.

Adeli, H., Hung, S.L., 1995. Machine Learning-Neural Networks,

Genetic Algorithms, andFuzzy Systems. Wiley, New York.

Adeli, H., Jiang, X., 2003. Neuro-fuzzy logic model for freeway work

zone capacity estimation. Journal of Transportation Engineering,

ASCE 129 (5), 484–493.

Adeli, H., Karim, A., 2001. Fuzzy-wavelet RBFNN model for freeway

incident detection. Journal of Transportation Engineering, ASCE

126 (6), 464–471.

Adeli, H., Park, H.S., 1995. Counterpropagation Neural Networks in

Structural Engineering. Journal of Structural Engineering, ASCE

121 (8), 1205–1212.

Adeli, H., Park, H.S., 1998. Neurocomputing in Design Automation.

CRC Press, Boca Raton, FL.

Adeli, H., Samant, A., 2000. An adaptive conjugate gradient neural

network—wavelet model for trafﬁc incident detection. Computer-

Aided Civil and Infrastructure Engineering 15 (4), 251–260.

Arditi, D., Oksay, F.E., Tokdemir, O., 1998. Predicting the outcome of

construction litigation using neural networks. Computer-Aided

Civil andInfrastructure Engineering 13 (2), 75–81.

Boyce, D., Rouphail, N., Kirson, A., 1993. Estimation andmeasure-

ment of link travel times in ADVANCE project. Proceedings of

Vehicle Navigation andInformation Systems Conference, IEEE,

Ottawa, Ont. Canada, Oct 12–15, pp. 62–66.



Cattan, J., Mohammadi, J., 1997. Analysis of bridge condition rating

using neural networks. Computer-Aided Civil and Infrastructure

Engineering 12 (6), 419–429.

Chassakios, A.P., Stephanedes, Y.J., 1994. Smoothing algorithms for

incident detection. Transportation Research Record 1453, 75–82.

Dailey, D.J., 1993. Travel-time estimation using cross-correlation

techniques. Transportation Research Part B 27B (2), 97–107.

Deo, M.C., Chaudhari, G., 1998. Tide prediction using neural

networks. Computer-Aided Civil and Infrastructure Engineering

13 (2), 113–120.

DeSieno, D., 1988. Adding a conscience to competitive learning. IEEE

International Conference on Neural Networks, vol. 1, San Diego,

July 24–27, pp. 117–224.

Ghosh-Dastidar, S., Adeli, H., 2003. Wavelet-clustering-neural net-

work model for freeway incident detection. Computer-Aided Civil

andInfrastructure Engineering 18 (5), 325–338.

Grossberg, S., 1982. Studies of Mind and Brain. Reidel Press, Boston.

Hecht-Nielsen, R., 1988. Application of counterpropagation networks.

Neural Networks 1 (2), 131–139.

Hertz, J., Krogh, A., palmer, R., 1991. Introduction to Theory of

Neural Computation. Addison Wesley, Redwood City.

Hoffman, C., Janko, J., 1990. Travel time as a basic of the LISB

guidance strategy. Proceedings, IEEE Road Trafﬁc Control

Conference, IEEE 1990, pp. 6–10.

Jiang, X., Adeli, H., 2003. Freeway work zone trafﬁc delay and cost

optimization model. Journal of Transportation Engineering, ASCE

129 (3), 230–241.

Karim, A., Adeli, H., 2002. Comparison of the Fuzzy—wavelet

RBFNN freeway incident detection model with the California

algorithm. Journal of Transportation Engineering, ASCE 128 (1),

21–30.

Karim, A., Adeli, H., 2003a. Fast automatic incident detection on

urban andrural freeways using wavelet energy algorithm. Journal

of Transportation Engineering, ASCE 129 (1), 57–68.

Karim, A., Adeli, H., 2003b. Radial basis function neural network for

work zone capacity andqueue estimation. Journal of Transporta-

tion Engineering Journal of Transportation Engineering, ASCE

129 (5), 494–503.

Kohonen, T., 1988. Self-organization andAssociative Memory.

Springer, New York.

Nihan, N.L., Holmesland, K.O., 1980. Use of box and the jenkins

times series techniques in trafﬁc forecasting. Transportation 9 (2),

125–143.

Okutani, I., Stephanedes, Y.J., 1984. Dynamic prediction of trafﬁc

volumes through Kalman ﬁltering theory. Transportation Re-

search-Part B 18B, 1–11.

Owusu-Ababia, S., 1998. Effect of neural network topology on ﬂexible

pavement cracking prediction. Computer-Aided Civil and Infra-

structure Engineering 13 (5), 349–355.

Park, D., Rilett, L.R., 1999. Forecasting freeway link travel times with

a multilayer feedforward neural network. Computer-Aided Civil

andInfrastructure Engineering 14 (5), 357–367.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning

internal representation by error propagation. In: Rumelhart,

D.E., James L. McClellandandthe PDP Research Group (Eds.),

Parallel DistributedProcesses: Explorations in the Microstructure

of Cognition, MIT Press, Cambridge, pp. 318–362.

Samant, A., Adeli, H., 2001. Enhancing neural network incident

detection algorithms using wavelets. Computer-Aided Civil and

Infrastructure Engineering 16 (4), 239–245.

Thirumalaiah, K., Deo, M.C., 1998. Real time ﬂow forecasting using

neural networks. Computer-Aided Civil and Infrastructure En-

gineering 13 (2), 101–111.

Van Arem, B., Van Der Vlish, M.J.M., Muste, M.R., Smulders, S.A.,

1997. Travel time estimation in the GERDIEN project. Interna-

tional Journal of Forecasting 13, 73–85.

